Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Microbiol Spectr ; 11(3): e0348322, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2324658

ABSTRACT

Bats are the reservoir for numerous human pathogens, including coronaviruses. Despite many coronaviruses having descended from bat ancestors, little is known about virus-host interactions and broader evolutionary history involving bats. Studies have largely focused on the zoonotic potential of coronaviruses with few infection experiments conducted in bat cells. To determine genetic changes derived from replication in bat cells and possibly identify potential novel evolutionary pathways for zoonotic virus emergence, we serially passaged six human 229E isolates in a newly established Rhinolophus lepidus (horseshoe bat) kidney cell line. Here, we observed extensive deletions within the spike and open reading frame 4 (ORF4) genes of five 229E viruses after passaging in bat cells. As a result, spike protein expression and infectivity of human cells was lost in 5 of 6 viruses, but the capability to infect bat cells was maintained. Only viruses that expressed the spike protein could be neutralized by 229E spike-specific antibodies in human cells, whereas there was no neutralizing effect on viruses that did not express the spike protein inoculated on bat cells. However, one isolate acquired an early stop codon, abrogating spike expression but maintaining infection in bat cells. After passaging this isolate in human cells, spike expression was restored due to acquisition of nucleotide insertions among virus subpopulations. Spike-independent infection of human coronavirus 229E may provide an alternative mechanism for viral maintenance in bats that does not rely on the compatibility of viral surface proteins and known cellular entry receptors. IMPORTANCE Many viruses, including coronaviruses, originated from bats. Yet, we know little about how these viruses switch between hosts and enter human populations. Coronaviruses have succeeded in establishing in humans at least five times, including endemic coronaviruses and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In an approach to identify requirements for host switches, we established a bat cell line and adapted human coronavirus 229E viruses by serial passage. The resulting viruses lost their spike protein but maintained the ability to infect bat cells, but not human cells. Maintenance of 229E viruses in bat cells appears to be independent of a canonical spike receptor match, which in turn might facilitate cross-species transmission in bats.


Subject(s)
COVID-19 , Chiroptera , Coronavirus 229E, Human , Animals , Humans , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism
2.
Virus Evol ; 9(1): veac121, 2023.
Article in English | MEDLINE | ID: covidwho-2326490

ABSTRACT

The first case of coronavirus disease 2019 (COVID-19) in Cambodia was confirmed on 27 January 2020 in a traveller from Wuhan. Cambodia subsequently implemented strict travel restrictions, and although intermittent cases were reported during the first year of the COVID-19 pandemic, no apparent widespread community transmission was detected. Investigating the routes of severe acute respiratory coronavirus 2 (SARS-CoV-2) introduction into the country was critical for evaluating the implementation of public health interventions and assessing the effectiveness of social control measures. Genomic sequencing technologies have enabled rapid detection and monitoring of emerging variants of SARS-CoV-2. Here, we detected 478 confirmed COVID-19 cases in Cambodia between 27 January 2020 and 14 February 2021, 81.3 per cent in imported cases. Among them, fifty-four SARS-CoV-2 genomes were sequenced and analysed along with representative global lineages. Despite the low number of confirmed cases, we found a high diversity of Cambodian viruses that belonged to at least seventeen distinct PANGO lineages. Phylogenetic inference of SARS-CoV-2 revealed that the genetic diversity of Cambodian viruses resulted from multiple independent introductions from diverse regions, predominantly, Eastern Asia, Europe, and Southeast Asia. Most cases were quickly isolated, limiting community spread, although there was an A.23.1 variant cluster in Phnom Penh in November 2020 that resulted in a small-scale local transmission. The overall low incidence of COVID-19 infections suggests that Cambodia's early containment strategies, including travel restrictions, aggressive testing and strict quarantine measures, were effective in preventing large community outbreaks of COVID-19.

3.
Transbound Emerg Dis ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119206

ABSTRACT

Bats are important reservoirs for alpha- and beta-coronaviruses. Coronaviruses (CoV) have been detected in pteropodid bats from several Southeast Asian countries, but little is known about coronaviruses in the Indonesian archipelago in proportion to its mammalian biodiversity. In this study, we screened pooled faecal samples from the Indonesian colonies of Pteropus vampyrus with unbiased next-generation sequencing. Bat CoVs related to Rousettus leschenaultii CoV HKU9 and Eidolon helvum CoV were detected. The 121 faecal samples were further screened using a conventional hemi-nested pan-coronavirus PCR assay. Three positive samples were successfully sequenced, and phylogenetic reconstruction revealed the presence of alpha- and beta-coronaviruses. CoVs belonging to the subgenera Nobecovirus, Decacovirus and Pedacovirus were detected in a single P. vampyrus roost. This study expands current knowledge of coronavirus diversity in Indonesian flying foxes, highlighting the need for longitudinal surveillance of colonies as continuing urbanization and deforestation heighten the risk of spillover events.

4.
PLoS Pathog ; 18(8): e1010763, 2022 08.
Article in English | MEDLINE | ID: covidwho-1987166

ABSTRACT

Transmembrane Protein 41B (TMEM41B) and Vacuole Membrane Protein 1 (VMP1) are two ER-associated lipid scramblases that play a role in autophagosome formation and cellular lipid metabolism. TMEM41B is also a recently validated host factor required by flaviviruses and coronaviruses. However, the exact underlying mechanism of TMEM41B in promoting viral infections remains an open question. Here, we validated that both TMEM41B and VMP1 are essential host dependency factors for all four serotypes of dengue virus (DENV) and human coronavirus OC43 (HCoV-OC43), but not chikungunya virus (CHIKV). While HCoV-OC43 failed to replicate entirely in both TMEM41B- and VMP1-deficient cells, we detected diminished levels of DENV infections in these cell lines, which were accompanied by upregulation of the innate immune dsRNA sensors, RIG-I and MDA5. Nonetheless, this upregulation did not correspondingly induce the downstream effector TBK1 activation and Interferon-beta expression. Despite low levels of DENV replication, classical DENV replication organelles were undetectable in the infected TMEM41B-deficient cells, suggesting that the upregulation of the dsRNA sensors is likely a consequence of aberrant viral replication rather than a causal factor for reduced DENV infection. Intriguingly, we uncovered that the inhibitory effect of TMEM41B deficiency on DENV replication, but not HCoV-OC43, can be partially reversed using exogenous fatty acid supplements. In contrast, VMP1 deficiency cannot be rescued using the metabolite treatment. In line with the observed phenotypes, we found that both TMEM41B- and VMP1-deficient cells harbor higher levels of compromised mitochondria, especially in VMP1 deficiency which results in severe dysregulations of mitochondrial beta-oxidation. Using a metabolomic profiling approach, we revealed distinctive global dysregulations of the cellular metabolome, particularly lipidome, in TMEM41B- and VMP1-deficient cells. Our findings highlight a central role for TMEM41B and VMP1 in modulating multiple cellular pathways, including lipid mobilization, mitochondrial beta-oxidation, and global metabolic regulations, to facilitate the replication of flaviviruses and coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus , Dengue , Energy Metabolism , Humans , Lipids , Membrane Proteins/genetics , Virus Replication
5.
Microbiol Spectr ; 10(3): e0044922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1874512

ABSTRACT

Bats are considered the natural reservoir of numerous emerging viruses such as severe acute respiratory syndrome coronaviruses (SARS-CoVs). There is a need for immortalized bat cell lines to culture and investigate the pathogenicity, replication kinetics, and evolution of emerging coronaviruses. We illustrate the susceptibility and permissiveness of a spontaneously immortalized kidney cell line (Rhileki) from Blyth's horseshoe bat (R. lepidus) to SARS-CoV-2 virus, including clinical isolates, suggesting a possible virus-host relationship. We were able to observe limited SARS-CoV-2 replication in Rhileki cells compared with simian VeroE6 cells. Slower viral replication in Rhileki cells was indicated by higher ct values (RT-PCR) at later time points of the viral culture and smaller foci (foci forming assay) compared with those of VeroE6 cells. With this study we demonstrate that SARS-CoV-2 replication is not restricted to R. sinicus and could include more Rhinolophus species. The establishment of a continuous Rhinolophus lepidus kidney cell line allows further characterization of SARS-CoV-2 replication in Rhinolophus bat cells, as well as isolation attempts of other bat-borne viruses. IMPORTANCE The current COVID-19 pandemic demonstrates the significance of bats as reservoirs for severe viral diseases. However, as bats are difficult to establish as animal models, bat cell lines can be an important proxy for the investigation of bat-virus interactions and the isolation of bat-borne viruses. This study demonstrates the susceptibility and permissiveness of a continuous kidney bat cell line to SARS-CoV-2. This does not implicate the bat species Rhinolophus lepidus, where these cells originate from, as a potential reservoir, but emphasizes the usefulness of this cell line for further characterization of SARS-CoV-2. This can lead to a better understanding of emerging viruses that could cause significant disease in humans and domestic animals.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Kidney , Pandemics , Phylogeny , SARS-CoV-2
6.
Transbound Emerg Dis ; 69(5): e1374-e1381, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1664117

ABSTRACT

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a camel-borne zoonotic virus endemic across Eastern Africa and the Middle East, with evidence of circulation in Bangladesh and Mongolia. To determine if MERS-CoV was present in Kazakhstan, in 2017-2018, we collected swabs and sera from Bactrian camels (n = 3124) and dromedary (n = 5083). The total seropositivity was 0.54% in Bactrian camels and 0.24% in dromedaries; however, we did not detect MERS-CoV RNA in swab samples. There was no difference in the probability of infection between species or sex, but younger camels had a higher probability of being seropositive, suggesting a recent introduction of the virus to Kazakhstan. The infection of both camel species indicates that they both may play a role as natural reservoirs. These results reinforce the need for continual surveillance, especially at the camel-human interface to understand the risk of zoonotic exposure.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Camelus , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Humans , Kazakhstan/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , RNA
7.
Cell Rep ; 34(6): 108728, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039309

ABSTRACT

Virus-specific humoral and cellular immunity act synergistically to protect the host from viral infection. We interrogate the dynamic changes of virological and immunological parameters in 12 patients with symptomatic acute SARS-CoV-2 infection from disease onset to convalescence or death. We quantify SARS-CoV-2 viral RNA in the respiratory tract in parallel with antibodies and circulating T cells specific for various structural (nucleoprotein [NP], membrane [M], ORF3a, and spike) and non-structural (ORF7/8, NSP7, and NSP13) proteins. Although rapid induction and quantity of humoral responses associate with an increase in disease severity, early induction of interferon (IFN)-γ-secreting SARS-CoV-2-specific T cells is present in patients with mild disease and accelerated viral clearance. These findings provide support for the prognostic value of early functional SARS-CoV-2-specific T cells with important implications in vaccine design and immune monitoring.


Subject(s)
COVID-19 , Interferon-gamma/metabolism , T-Lymphocytes , Acute-Phase Reaction , Adult , Aged , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Convalescence , Humans , Immunity, Cellular , Immunity, Humoral , Longitudinal Studies , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
8.
Lancet ; 396(10251): 603-611, 2020 08 29.
Article in English | MEDLINE | ID: covidwho-719049

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with a 382-nucleotide deletion (∆382) in the open reading frame 8 (ORF8) region of the genome have been detected in Singapore and other countries. We investigated the effect of this deletion on the clinical features of infection. METHODS: We retrospectively identified patients who had been screened for the ∆382 variant and recruited to the PROTECT study-a prospective observational cohort study conducted at seven public hospitals in Singapore. We collected clinical, laboratory, and radiological data from patients' electronic medical records and serial blood and respiratory samples taken during hospitalisation and after discharge. Individuals infected with the ∆382 variant were compared with those infected with wild-type SARS-CoV-2. Exact logistic regression was used to examine the association between the infection groups and the development of hypoxia requiring supplemental oxygen (an indicator of severe COVID-19, the primary endpoint). Follow-up for the study's primary endpoint is completed. FINDINGS: Between Jan 22 and March 21, 2020, 278 patients with PCR-confirmed SARS-CoV-2 infection were screened for the ∆382 deletion and 131 were enrolled onto the study, of whom 92 (70%) were infected with the wild-type virus, ten (8%) had a mix of wild-type and ∆382-variant viruses, and 29 (22%) had only the ∆382 variant. Development of hypoxia requiring supplemental oxygen was less frequent in the ∆382 variant group (0 [0%] of 29 patients) than in the wild-type only group (26 [28%] of 92; absolute difference 28% [95% CI 14-28]). After adjusting for age and presence of comorbidities, infection with the ∆382 variant only was associated with lower odds of developing hypoxia requiring supplemental oxygen (adjusted odds ratio 0·07 [95% CI 0·00-0·48]) compared with infection with wild-type virus only. INTERPRETATION: The ∆382 variant of SARS-CoV-2 seems to be associated with a milder infection. The observed clinical effects of deletions in ORF8 could have implications for the development of treatments and vaccines. FUNDING: National Medical Research Council Singapore.


Subject(s)
Coronavirus Infections/virology , Gene Deletion , Genome, Viral/genetics , Pneumonia, Viral/virology , Adult , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Humans , Hypoxia/etiology , Hypoxia/therapy , Middle Aged , Open Reading Frames , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Prospective Studies , Respiratory Therapy , SARS-CoV-2 , Severity of Illness Index , Singapore/epidemiology , Virus Replication
9.
mBio ; 11(4)2020 07 21.
Article in English | MEDLINE | ID: covidwho-660818

ABSTRACT

To date, limited genetic changes in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome have been described. Here, we report a 382-nucleotide (nt) deletion in SARS-CoV-2 that truncates open reading frame 7b (ORF7b) and ORF8, removing the ORF8 transcription regulatory sequence (TRS) and eliminating ORF8 transcription. The earliest 382-nt deletion variant was detected in Singapore on 29 January 2020, with the deletion viruses circulating in the country and accounting for 23.6% (45/191) of SARS-CoV-2 samples screened in this study. SARS-CoV-2 with the same deletion has since been detected in Taiwan, and other ORF7b/8 deletions of various lengths, ranging from 62 nt to 345 nt, have been observed in other geographic locations, including Australia, Bangladesh, and Spain. Mutations or deletions in ORF8 of SARS-CoV have been associated with reduced replicative fitness and virus attenuation. In contrast, the SARS-CoV-2 382-nt deletion viruses showed significantly higher replicative fitness in vitro than the wild type, while no difference was observed in patient viral load, indicating that the deletion variant viruses retained their replicative fitness. A robust antibody response to ORF8 has been observed in SARS-CoV-2 infection, suggesting that the emergence of ORF8 deletions may be due to immune-driven selection and that further deletion variants may emerge during the sustained transmission of SARS-CoV-2 in humans.IMPORTANCE During the SARS epidemic in 2003/2004, a number of deletions were observed in ORF8 of SARS-CoV, and eventually deletion variants became predominant, leading to the hypothesis that ORF8 was an evolutionary hot spot for adaptation of SARS-CoV to humans. However, due to the successful control of the SARS epidemic, the importance of these deletions for the epidemiological fitness of SARS-CoV in humans could not be established. The emergence of multiple SARS-CoV-2 strains with ORF8 deletions, combined with evidence of a robust immune response to ORF8, suggests that the lack of ORF8 may assist with host immune evasion. In addition to providing a key insight into the evolutionary behavior of SARS-CoV-2 as the virus adapts to its new human hosts, the emergence of ORF8 deletion variants may also impact vaccination strategies.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , Open Reading Frames , Base Sequence , Betacoronavirus/immunology , Betacoronavirus/physiology , Humans , SARS-CoV-2 , Sequence Deletion , Virus Replication
10.
Emerg Microbes Infect ; 9(1): 900-902, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-209985

ABSTRACT

Despite initial findings indicating that SARS-CoV and SARS-CoV-2 are genetically related belonging to the same virus species and that the two viruses used the same entry receptor, angiotensin-converting enzyme 2 (ACE2), our data demonstrated that there is no detectable cross-neutralization by SARS patient sera against SARS-CoV-2. We also found that there are significant levels of neutralizing antibodies in recovered SARS patients 9-17 years after initial infection. These findings will be of significant use in guiding the development of serologic tests, formulating convalescent plasma therapy strategies, and assessing the longevity of protective immunity for SARS-related coronaviruses in general as well as vaccine efficacy.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19 , Coronavirus Infections/therapy , Humans , Immunization, Passive/standards , Pandemics , SARS-CoV-2 , Time Factors , Viral Vaccines/standards , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL